

Contents

	Overview
	Description

	Installation

	Documentation

	Development

	Installation

	Overview
	Description

	Installation

	Documentation

	Development

	Schemas

	Usage
	Generated Classes

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.1.0 (2018-06-04)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/python-ngoschema]

	tests

	
[image: Requirements Status] [https://requires.io/github/numengo/python-ngoschema/requirements/?branch=master]

	package

	
[image: PyPI Package latest release] [https://pypi.python.org/pypi/ngoschema] [image: PyPI Wheel] [https://pypi.python.org/pypi/ngoschema] [image: Supported versions] [https://pypi.python.org/pypi/ngoschema] [image: Supported implementations] [https://pypi.python.org/pypi/ngoschema]

[image: Commits since latest release] [https://github.com/numengo/python-ngoschema/compare/v1.0.10...master]

Description

I’m Cedric ROMAN.

ngoschema aims at automate the building of classes based on a JSON schema [https://spacetelescope.github.io/understanding-json-schema/index.html].

User can declare all class attributes in a schema (along with their type, default
value) and the class will be built with accessors to check and validate data.

User can add methods and override setters/getters, but the library provides a
boiler plate to automatically create the class, nicely instrumented (with loggers,
exception handling, type checking, data validation, serialization, etc…).

The classbuilder allows to easily load definitions based on a canonical name and a namespace.

Instance of these classes can be iterated and behave as standard collections.

ngoschema aims at being a toolkit for Domain-Driven Design and Model-Driven Architecture.

The library is build on top of python-jsonchema [http://python-jsonschema.readthedocs.io/en/latest/validate/], a python
implementation for JSON schema validation.

	Free software: GNU General Public License v3

Installation

To install, with the command line:

pip install ngoschema

Documentation

https://python-ngoschema.readthedocs.io/

Settings are managed using simple-settings [https://github.com/drgarcia1986/simple-settings]
and can be overriden with configuration files (cfg, yaml, json) or with environment variables
prefixed with NGOSCHEMA_.

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Installation

To install, with the command line:

pip install ngoschema

Settings are managed using
simple-settings [https://github.com/drgarcia1986/simple-settings]
and can be overriden with configuration files (cfg, yaml, json) or with environment variables
prefixed with NGOSCHEMA_.

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/python-ngoschema]

	tests

	
[image: Requirements Status] [https://requires.io/github/numengo/python-ngoschema/requirements/?branch=master]

	package

	
[image: PyPI Package latest release] [https://pypi.python.org/pypi/ngoschema] [image: PyPI Wheel] [https://pypi.python.org/pypi/ngoschema] [image: Supported versions] [https://pypi.python.org/pypi/ngoschema] [image: Supported implementations] [https://pypi.python.org/pypi/ngoschema]

[image: Commits since latest release] [https://github.com/numengo/python-ngoschema/compare/v1.0.10...master]

Description

I’m Cedric ROMAN.

ngoschema aims at automate the building of classes based on a JSON schema [https://spacetelescope.github.io/understanding-json-schema/index.html].

User can declare all class attributes in a schema (along with their type, default
value) and the class will be built with accessors to check and validate data.

User can add methods and override setters/getters, but the library provides a
boiler plate to automatically create the class, nicely instrumented (with loggers,
exception handling, type checking, data validation, serialization, etc…).

The classbuilder allows to easily load definitions based on a canonical name and a namespace.

Instance of these classes can be iterated and behave as standard collections.

ngoschema aims at being a toolkit for Domain-Driven Design and Model-Driven Architecture.

The library is build on top of python-jsonchema [http://python-jsonschema.readthedocs.io/en/latest/validate/], a python
implementation for JSON schema validation.

	Free software: GNU General Public License v3

Installation

To install, with the command line:

pip install ngoschema

Documentation

https://python-ngoschema.readthedocs.io/

Settings are managed using simple-settings [https://github.com/drgarcia1986/simple-settings]
and can be overriden with configuration files (cfg, yaml, json) or with environment variables
prefixed with NGOSCHEMA_.

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Schemas

The library intends to deal with complex schemas, possibly using inheritance which is
not yet supported in JSON Schema, as well as data types which can be useful in generated class.

For this purpose, a meta-schema is built on top of the standard ones, adding specific
features, but which won’t be recognized by standard validators. Though, the schema
valid against this meta-schema should usually be processed without problem by standard
validation libraries (with warnings for the unknown field) with the exception.

	The additional grammar adds:
	
	
	extra object attributes:
	
	isAbtract boolean to indicate an abstract class.

	extends allowing to specify the id of parent classes.

	readOnly and notSerialized to specify properties which cannot beset or are not serialized.

	extra literal types (date, time, datetime, path, importable).

	
	extra property attributes for specific types:
	
	isPathDir boolean to indicate the path of a directory

	isPathFile boolean to indicate the path of a file

	isPathExisting boolean to indicate an existing path

	foreignKey dictionary of options to define a foreign key to another object

It also comes with a few definitions that can be useful in a Domain-Driven Design implementation [https://en.wikipedia.org/wiki/Domain-driven_design].

This meta-schema is available as https://numengo.org/ngoschema <https://numengo.org/ngoschema#
and can be optionally referred as $schema [https://json-schema.org/understanding-json-schema/basics.html#declaring-a-json-schema].
in the definitions (instead of the standard draft [https://json-schema.org/understanding-json-schema/index.html])

	Additional types are available for literals, and can then be used already properly casted in further code. Those types are mapped as follows:
	
	date: datetime.date

	datetime: datetime.datetime

	time: datetime.time

	time: datetime.time

	path: pathlib.Path

Usage

User can register json files as schemas in his module using load_module_schemas("{module_folder}") in the module __init__.py.

A proper JSON-schema document should have a property $id set to an absolute URI (it s domain/namespace) [https://json-schema.org/understanding-json-schema/structuring.html#id15].

To add a schema to a class, user needs to have the class use the SchemaMetaclass and can build a class refering to a
domain/namespace which will be looked first in the available modules schemas, and eventually on-line.
Some schemas from json-schema.org [https://json-schema.org/] are included in the schemas directory of the module.

The library adds some meta-programing to create instrumented classes following a ProtocolBase
One could create a class extending the Card class from json-schema.org [https://json-schema.org/] as follows:

from future.utils import with_metaclass
from ngoschema.protocols import SchemaMetaclass, ProtocolBase

class MyCardClass(with_metaclass(SchemaMetaclass, ProtocolBase)):
 __schema__ = "http://json-schema.org/card"

The schema can be indicated using different fields:
* __schema__ indicates a URI that the resolver will look for in the
schema store. The library comes with a derived resolver which automatically looks
for some schemas to load. see ngoschema.resolver
* __schema_path__ indicates a path to a file containing the schema

The class should always inherit from with_metaclass(SchemaMetaclass, Parent1, Parent2)

If user redefines the __init__ method, it should always call the ProtocolBase
initialization method.

User can’t define additional public properties, but is free to do anything with protected or private properties.

SchemaMetaclass will build the class doing a lot of magic:
* it adds a logger that can be accessed with self.logger
* it adds proper logging and exception handling to all methods
* it add type conversion/checking and data validation to methods according to their
documentation

Generated Classes

Classes generated using ngoschema expose all defined
properties as both attributes and through dictionary access.

In addition, classes contain a number of utility methods for serialization,
deserialization, and validation.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/numengo/python-ngoschema/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

NgoSchema could always use more documentation, whether as part of the
official NgoSchema docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/numengo/python-ngoschema/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up python-ngoschema for local development:

	Fork python-ngoschema [https://github.com/numengo/python-ngoschema]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/python-ngoschema.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/numengo/python-ngoschema/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Cédric ROMAN - http://www.numengo.com

Changelog

0.1.0 (2018-06-04)

	First release on PyPI.

Index

Reference

	ngoschema

ngoschema

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Description

 		
 Installation

 		
 Documentation

 		
 Development

 		
 Installation

 		
 Overview

 		
 Description

 		
 Installation

 		
 Documentation

 		
 Development

 		
 Schemas

 		
 Usage

 		
 Generated Classes

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.1.0 (2018-06-04)

_static/plus.png

